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ABSTRACT 

Background: The oxidative phosphorylation system (OXPHOS) includes nuclear chromosome 

(nDNA)- and mitochondrial DNA (mtDNA)-encoded polypeptides. Many rare OXPHOS 

disorders, such as striatal necrosis syndromes, are due to genetic mutations. Despite important 

advances in sequencing procedures, causative mutations remain undetected in some patients. It is 

possible that etiologic factors, such as environmental toxins, are the cause of these cases. Indeed, 

the inhibition of a particular enzyme by a poison could imitate the biochemical effects of 

pathological mutations in that enzyme. Moreover, environmental factors can modify the 

penetrance or expressivity of pathological mutations.  

Objectives: To study the interaction between p.MT-ATP6 and an environmental exposure that 

may contribute phenotypic differences between healthy individuals and patients suffering from 

striatal necrosis syndromes or other mitochondriopathies.  

Methods: We analyzed the effects of the ATP synthase inhibitor tributyltin chloride (TBTC), a 

widely distributed environmental factor that contaminates human food and water, on 

transmitochondrial cell lines with or without an ATP synthase mutation that causes striatal 

necrosis syndrome. Doses were selected based on TBTC concentrations previously reported in 

human whole blood samples. 

Results: TBTC modifies the phenotypic effects caused by a pathological mtDNA mutation. 

Interestingly, wild-type cells treated with this xenobiotic show similar bioenergetics when 

compared with the untreated mutated cells. 

Conclusions: In addition to the known genetic causes, our findings suggest that environmental 

exposure to TBTC might contribute to the etiology of striatal necrosis syndromes. 
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INTRODUCTION 

The mitochondrial DNA (mtDNA) m.8993T>G transversion in the MT-ATP6 gene 

provokes a p.L156R substitution in the transmembrane helix 4 (TMH4) of the p.MT-ATP6 

subunit. This polypeptide is an ATP synthase (complex V, CV) component of the oxidative 

phosphorylation system (OXPHOS). The amino acid position 156 is located in the channel used 

by protons to enter the mitochondrial matrix and power the ATP synthesis. The m.8993T>G 

mutation is associated with maternally inherited Leigh syndrome (MILS) and neurogenic muscle 

weakness, ataxia and retinitis pigmentosa (NARP) (Holt et al. 1990; Thorburn and Rahman 

1993). As a generalization, NARP is caused by moderate levels of the m.8993T>G mutation, 

whereas individuals with mutant loads greater than 90 % have MILS (Tatuch et al. 1992). 

However, in some families, oligosymptomatic children share the same mutation load of 

symptomatic siblings (Enns et al. 2006), and high mutation loads are not always associated with 

MILS or NARP signs (Degoul et al. 1995; Mkaouar-Rebai et al. 2009; Tsao et al. 2001). Similar 

to many other pathological mutations (Cooper et al. 2013; Lake et al. 2015), other factors are 

likely involved in the phenotypic differences among individuals with the same m.8993T>G 

mutation load. 

Other pathological mutations in mtDNA genes have been reported in MILS patients 

(Montoya et al. 2009; Ruhoy and Saneto 2014; Thorburn and Rahman 1993). Thus, polymorphic 

variation in these genes may influence the m.8993T>G phenotype. Indeed, the mtDNA genetic 

background (mtDNA haplogroups) plays an important role in modulating the biochemical defects 

and clinical outcome by altering the risk of MILS due to m.8993T>G (D'Aurelio et al. 2010; Hao 

et al. 2013). Moreover, many other pathological mutations in nuclear DNA (nDNA) genes have 
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been described in Leigh syndrome (LS) patients (Ruhoy and Saneto 2014). For example, a 

mutated mitochondrial aminoacyl-tRNA synthetase was described in a LS patient 

(Schwartzentruber et al. 2014). Interestingly, a MILS patient had a homoplasmic mutation in the 

tRNAVal and his clinically normal mother was also homoplasmic mutant (McFarland et al. 2002). 

It was recently shown that the overexpression of the mitochondrial valyl-tRNA synthetase can 

restore the steady-state levels of the mutated tRNAVal. Thus, inter-individual variations of this 

synthetase may underlie clinical differences (Rorbach et al. 2008). Therefore, polymorphic 

variation in nDNA genes may influence the m.8993T>G phenotype. 

 In addition to nuclear and mitochondrial genetic factors, environmental stimuli may 

modify the phenotype of the m.8993T>G mutation. Certain chemicals trigger the appearance of 

pathological phenotypes associated with mtDNA mutations. For example, individuals harboring 

the m.1555A>G transition in the MT-RNR1 gene for the 12S rRNA suffer non-syndromic hearing 

loss when exposed to aminoglycosides (Prezant et al. 1993). Furthermore, occupational exposure 

to n-hexane and other solvents precipitated visual failure in a Leber hereditary optic neuropathy 

patient with the m.11778G>A mutation (Carelli et al. 2007). Previous reports suggest that the CV 

proton channel, particularly the p.MT-ATP6 subunit, is the target site for organotin compounds, 

including tributyltin chloride (TBTC) (von Ballmoos et al. 2004). These compounds contaminate 

human food and water (Kotake 2012). Therefore, it is possible that TBTC affects the expressivity 

of the m.8993T>G mutation. 
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MATERIALS AND METHODS 

 

Transmitochondrial cell line construction, characterization and functional investigations 

  

To homogenize nuclear and environmental factors, we built transmitochondrial cell lines 

(cytoplasmic hybrids or cybrids) with osteosarcoma 143B or adenocarcinoma A549 rho0 nuclear 

backgrounds using patient and control platelets (Chomyn et al. 1994). All samples were collected 

with informed consent, and the Ethics Review Committees of the involved hospitals and the 

Government of Aragón approved the study (CEICA 11/2010). 

The cybrids were grown in Dulbecco’s modified eagle medium containing glucose (1 g/l), 

pyruvate (0.11 g/l) and fetal bovine serum (5 %) with no antibiotics (Llobet et al. 2015a).  

For molecular cytogenetic analysis, cells were exposed to colchicine (0.5 µg/ml) for 4 h at 

37 °C and harvested routinely. Metaphases were prepared following a conventional cytogenetic 

protocol for methanol: acetic acid (3:1)-fixed cells. Approximately 20 metaphase cells were 

captured and analyzed for each cell line. The genetic fingerprint of the cybrid cell lines was 

determined using an AmpFLSTR® Identifiler® PCR Amplification Kit (Life Technologies) and 

an ABI Prism 3730xl DNA analyzer (Applied Biosystems). These genetic fingerprints were 

compared with those from the American Type Culture Collection (ATCC) cell lines. To confirm 

the nucleotide at the m.8993 position, a PCR-RFLP analysis was performed (Lopez-Gallardo et 

al. 2014). The mtDNA sequences were obtained using a BigDye Terminator v 3.1 Cycle 

Sequencing Kit (Applera Rockville) and an ABI Prism 3730xl DNA analyzer. The revised 

Cambridge reference sequence (GenBank NC_012920) and an mtDNA phylogenetic tree were 

used to locate mutations and define mtDNA haplogroups (van Oven and Kayser 2009), 
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respectively. The level of peroxisome proliferator-activated receptor gamma (PPARγ) mRNA 

was determined in triplicate using RT-qPCR and the One-Step Real-Time system (Applied 

Biosytems). The expression levels were normalized using 18S rRNA. The ΔCt method was used 

to calculate fold expression. StepOne software version 2.0 (Applied Biosystems) was used for 

data analysis. 

The analyses of oxygen consumption, ATP and H2O2 levels were performed in triplicate 

according to previously described protocols (Gomez-Duran et al. 2010). The determination of the 

mitochondrial inner membrane potential (MIMP) was performed using a Mito-ID Membrane 

Potential Detection Kit (Enzo Life Sciences). Fluorescent microscopy was performed on live cells 

using a Floyd Cell imaging station (Life Technologies). Isocitrate dehydrogenase (IDH) activity 

was determined using a commercial Isocitrate Dehydrogenase Colorimetric Assay Kit (Abcam®), 

according to the manufacturer’s instructions. Briefly, 1 x 106 cells grown in DMEM were lysed in 

200 µl of an assay buffer provided in the kit. The lysate was centrifuged at 13,000 x g for 10 min, 

and the cleared supernatant was used for the assay. NAD+ was used as the substrate for the NAD-

IDH assay. The measurements were obtained using a NovoStar MBG Labtech microplate 

instrument.  

In a previous study, 25 out of 32 blood donors from Michigan, USA, showed TBT 

detectable concentrations in whole blood samples (Kannan et al. 1999). The observed range, 8.3 - 

293 nM, encompasses TBTC concentrations used in this study. When required, TBTC (Sigma-

Aldrich) or oligomycin (OLI) (Sigma-Aldrich), another CV inhibitor, were solved in ethanol and 

added to the respiration medium during the oxygen consumption determination and to the 

medium for ATP, MIMP, H2O2 or IDH determination during the 2 h, 15 min, 30 min and 24 h of 

incubation, respectively. 
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Statistical analysis 

  

The statistical package StatView 6.0 was used to perform all statistical analyses. The data 

are presented as the mean and standard deviation. At least three analyses were performed for each 

parameter. An unpaired two-tailed t-test was used to compare parameters. Linear regression 

analyses were performed and linear regression equations and regression coefficients are indicated 

for TBTC concentrations vs. oxygen consumption, ATP amount, or H2O2 levels. P values < 0.05 

were considered statistically significant. 

 

RESULTS 

 

Characterization of the cybrid cell lines 

  

Five cybrid cell lines were built. Two cybrids within the adenocarcinoma A549 nuclear 

background should harbor the m.8993T (Awt) or m.8993G (Am) mtDNA alleles. The other three 

cybrids within the osteosarcoma 143B nuclear background should also harbor the m.8993G (Om) 

or m.8993T mtDNA alleles. For the osteosarcoma 143B m.8993T cells, a non-isogenic wild-type 

cybrid was first generated (Owt). An isogenic cybrid was produced (Owti) after we obtained 

platelets from the wild-type mother of the mutant patient.  

Karyotyping was used to verify that the nuclear backgrounds were equivalent. Thus, the 

Am and Awt cybrids share the modal number of chromosomes (60) and several chromosomal 

abnormalities [del(2p21), +der(6)t(1;6)(q24-25?;q23), +der(7)delq32?, del(11q23)] (see 
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Supplemental Material, Figure S1). The modal number of chromosomes differs in Owt (66), Owti 

(69), and Om (70/71) cybrids,; however, these numbers are similar to those previously published 

in other osteosarcoma 143B transmitochondrial cell lines (Gomez-Duran et al. 2010). These 

cybrids share several chromosomal abnormalities [+i(7p), +der(7)t(1;7)(q25;q32)[2], 

+der(12)add(q24.3)]. To confirm the cell origin of our cybrids and the equivalence of nuclear 

backgrounds, we determined the nuclear genetic fingerprint of 16 short tandem repeats (STRs) 

(see Supplemental Material, Table S1). Adenocarcinoma A549 cybrids do not differ in STR 

markers and do not vary from the 9 STR markers characterized for the ATCC adenocarcinoma 

A549 cell line. The same is true for the osteosarcoma 143B cybrids and the ATCC osteosarcoma 

143B cell line.  

Next, we confirmed the mtDNA alleles of the cybrids using PCR-RFLP. The m.8993T>G 

mutation caused the amplicon to be cut in two fragments, and the wild-type amplicon was not 

digested (see Supplemental Material, Figure S2). To rule out the presence of mtDNA non-

defining haplogroup (private) mutations that can affect the bioenergetic phenotypes of these 

cybrids, we sequenced the complete mtDNA (GenBank JN635299, KJ742713, KJ742715, 

KT002148, KT002149) (see Supplemental Material, Figure S2). Owt cybrids contained two non-

synonymous private mutations: m.3387T>A provoking a p.MT-ND1:I27M substitution and 

m.14189A>G causing a p.MT-ND6:V162A change. Am cybrids contained one non-synonymous 

private mutation: m.9194A>G producing a p.MT-ATP6:H223R replacement. These mutations 

have been previously found 0, 9 and 4 times, respectively, in 29,867 mtDNA sequences 

(GenBank, February 2015). However, the affected positions show a low evolutionary 

conservation (23.5 %, 13.9 % and 14.1 % in 5,165, 5,177 and 4,925 eukaryote species, 

respectively, obtained from GenBank in February 2015) when compared with the conservation of 
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the p.MT-ATP6:L156 amino acid (99.0 % in 4,925 Eukaryota species) that causes MILS or 

NARP. The lack of evolutionary conservation suggests that these mutations would have little or 

no impact on phenotype. Therefore, we assume that the m.8993T>G transversion is responsible 

for the major phenotypic differences between mutant and wild-type cybrids that have the same 

nuclear background. 

It has previously been reported that m.8993T>G mutant cybrids with the osteosarcoma 

143B nuclear background showed reduced oxygen consumption (D'Aurelio et al. 2010; Lopez-

Gallardo et al. 2014; Pallotti et al. 2004), decreased ATP levels (D'Aurelio et al. 2010; Fujita et 

al. 2007; Lopez-Gallardo et al. 2014; Pallotti et al. 2004; Sgarbi et al. 2009; Vazquez-Memije et 

al. 2009), diminished MIMP (Lopez-Gallardo et al. 2014), and increased reactive oxygen species 

(ROS) (Lopez-Gallardo et al. 2014; Wojewoda et al. 2010). Oxygen consumption was also 

reported to be reduced in m.8993T>G mutant cybrids with the cervical cancer HeLa EB8 nuclear 

background (Shidara et al. 2005). To confirm that the mutant cybrids used in the present study 

also showed reduced OXPHOS capability, we analyzed these mitochondrial variables. We found 

that oxygen consumption was significantly decreased in both Om and Am cybrids (see 

Supplemental Material, Figure S3A and Table S3). The ATP levels were significantly diminished 

in only the Om cybrid. In contrast with Om in which H2O2 was significantly higher than in Owti, 

H2O2 levels were decreased in Am cybrids compared with Awt, though not significantly so. It 

was previously reported that mitochondria of an m.8993T>G mutant osteosarcoma 143B cybrid 

generated MIMP at the same magnitude as the parental wild-type cells (Wojewoda et al. 2012). 

We found that, similar to Om cybrids (Lopez-Gallardo et al. 2014), the MIMP in Am cybrids was 

reduced (see Supplemental Material, Figure S3B), although the last result is based on visual 

assessment of a single sample.  
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These results confirm that the biochemical phenotypes of our cybrids are similar to other 

reported cybrids with the m.8993T>G mutation. 

 

Effects of tributyltin chloride on cybrids 

 

 It was previously reported that mitochondrial respiration was significantly decreased in 

mice treated with TBTC (Ueno et al. 2003), and that oxygen consumption in human adipose 

tissue derived-stem cells (hASCs) was decreased in reponse to 100 nM TBTC (Llobet et al. 

2015b). We found that TBTC ≥ 10 nM significantly decreased oxygen consumption in Om 

cybrids when compared with untreated cybrids (Figure 1A). TBTC ≥ 50 nM was required to 

significantly reduce oxygen consumption in Owt cybrids. There are negative and significant 

correlations between TBTC concentration and oxygen consumption in Owt (linear regression 

coefficient () for the change in %O2 consumption with a 1-nM increase in TBTC = –0.45; R2 = 

0.924; P < 0.0001) and Om (TBTC  = –0.41; R2 = 0.796; P < 0.0001). For the majority of TBTC 

concentrations between 20 and 90 nM, the reduction in oxygen consumption in response to TBTC 

was significantly greater in Om than Owt cybrids.  

Additionally, TBTC ≥ 20 nM significantly decreased oxygen consumption in Am cybrids 

when compared with untreated cybrids (Figure 1B). TBTC ≥ 70 nM significantly reduced oxygen 

consumption in Awt cybrids; however, 40 nM TBTC also reduced this parameter. There are 

negative and significant correlations between TBTC concentration and oxygen consumption in 

Awt (TBTC  = –0.35; R2 = 0.876; P < 0.0001) and Am cybrids (TBTC  = –0.46; R2 = 0.956; P 

< 0.0001). For TBTC concentrations between 30 and 90 nM, the reduction in oxygen 

consumption in response to TBTC was significantly greater in Am than Awt cybrids. The 
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decrease in oxygen consumption in response to 50 and 60 nM TBTC was significantly greater in 

Om than in Am cybrids, and the decrease in oxygen consumption in response to 90 and 100 nM 

TBTC was significantly greater in Owt than Awt cybrids.  

 Previous reports showed that 100 nM tributyltin decreased ATP levels in human 

embryonic carcinoma NT2/D1 cells (Yamada et al. 2014). We found that TBTC ≥ 15 nM 

significantly decreased ATP levels in Om and Am cybrids when compared with untreated cybrids 

(Figure 2). Furthermore, Owti and Awt cybrids treated with TBTC ≥ 60 nM and 90 nM, 

respectively, showed a significant reduction in ATP levels. These levels were also reduced in 

Owti cybrids treated with 15 nM TBTC. There are negative and significant correlations between 

TBTC concentrations and ATP levels in Owti (TBTC  = –0.17; R2 = 0.810; P = 0.0374), Om 

(TBTC  = –0.30; R2 = 0.850; P = 0.0234) and Am cybrids (TBTC  = –0.38; R2 = 0.780; P = 

0.0491) but not Awt cybrids (TBTC  = –0.11; R2 = 0.382; P = 0.3076). Om and Am cybrids 

were more susceptible to TBTC concentrations ≥ 15 or ≥ 30 nM, respectively, when compared 

with the wild-type. The decrease in ATP levels in response to 90 nM TBTC was significantly 

greater in Am than Om cybrids. There was no significant difference in ATP levels between Owti 

and Awt cybrids at any dose. 

 In a previous study, MIMP was diminished in mouse thymocytes treated with 10 nM 

TBTC (Sharma and Kumar 2014). In the present study, visual assessment of a single sample 

suggests that TBTC ≥ 30 nM decreased the MIMP of the Am cybrid. However, a concentration ≥ 

60 nM is required to affect the MIMP of the Awt cybrid (Figure 3).  

In a preceding study, concentrations of TBTC 10 nM increased H2O2 production in mouse 

thymocytes (Sharma and Kumar 2014). However, in other studies, TBTC ≤ 300 nM did not 

increase H2O2 levels in dissociated mix cells from different parts of rat brain (Mitra et al. 2014), 
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and 100 nM TBTC did not change the H2O2 production in hASCs (Llobet et al. 2015b). We found 

that, TBTC ≥ 30 nM significantly decreased H2O2 production in Owti and Om cybrids when 

compared with untreated cybrids (Figure 4). There are negative and significant correlations 

between TBTC concentrations and H2O2 levels in Owti (TBTC  = –0.56; R2 = 0.969; P = 

0.0006) and Om cybrids (TBTC  = –0.58; R2 = 0.915; P = 0.0071).  

 

Tributyltin target 

 

Several TBTC targets have been proposed. It has been reported that TBTC can activate 

genomic pathways by binding PPARγ (Kanayama et al. 2005). Thus, the different susceptibilities 

of mutant and wild-type cybrids to TBTC may be PPARγ-mediated. Osteosarcoma 143B and 

adenocarcinoma A549 cells express the PPARγ gene (Haydon et al. 2002; Li et al. 2014). 

However, we did not observe significant differences in PPARγ mRNA levels between mutant and 

wild-type cybrids (see Supplemental Material, Figure S3A). Therefore, this target does not 

explain our results. 

A previous report showed that 100 nM TBTC decreased IDH activity in human embryonic 

carcinoma NT2/D1 cells. These results suggest that IDH is a novel target of TBTC (Yamada et al. 

2014). IDH is a mitochondrial enzyme from the tricarboxylic acid cycle that produces NADH. 

This compound is reoxidized in the OXPHOS electron transport chain and increases oxygen 

consumption and MIMP and ATP production. Therefore, the inhibition of IDH by TBTC would 

decrease all of these parameters. However, we have previously found that 100 nM TBTC 

increased IDH activity in hASCs (Llobet et al. 2015b). To assess IDH inhibition, we tested the 

effect of TBTC on osteosarcoma 143B cybrids. At TBTC ≥ 20 nM, Owti IDH activity did not 
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differ significantly from untreated Owti cells. TBTC at 20 and 100 nM significantly increased 

IDH activity in the Om cybrid compared with untreated Om cells (Figure 5). These data suggest 

that NADH accumulated by OXPHOS dysfunction in mutant cybrids can provoke an abnormal 

increase in isocitrate and a compensatory expression of IDH. Indeed, the mutant cybrid showed 

significantly higher IDH activity than the Owti cybrid (see Supplemental Material, Figure S3A). 

Thus, inhibition of IDH does not explain our results. 

CV is the third proposed target of TBTC. In previous studies it has been shown that, 

similar to TBTC, the CV inhibitor OLI ≥ 49 nM decreased oxygen consumption in osteosarcoma 

143B cybrids (Gomez-Duran et al. 2010; McKenzie et al. 2007; Gomez-Duran et al. 2012; Zhang 

et al. 2012) and 3.15 μM OLI produced a decline in ATP production in these 143B cybrids 

(Gomez-Duran et al. 2010; McKenzie et al. 2007; Gomez-Duran et al. 2012). Furthermore, 3.15 

μM OLI increased and 6 μM OLI decreased MIMP in osteosarcoma 143B cybrids (McKenzie et 

al. 2007; Porcelli et al. 2009). Surprisingly, in this study, a qualitative assessment suggests that 

MIMP was reduced in Awt cybrids in response to 16 nM OLI, but was reduced in Am cybrids in 

response to only 4 nM OLI (Figure 6A). OLI may cause a decrease in MIMP because there is not 

enough ATP to activate respiratory substrates (Brown et al. 1990). The effect of OLI on H2O2 

levels also varies. Previous studies showed that 4 nM OLI increased these H2O2 levels in mouse 

preadipocytes 3T3-L1 (Carriere et al. 2003), and 16 nM OLI decreased H2O2 in hASCs (Llobet et 

al. 2015b). In both Om and Owt cybrids, 16 nM OLI decreased H2O2 levels (Figure 6B). Similar 

to hASCs (Llobet et al. 2015b), 16 nM OLI increased IDH activity in Om cybrids (Figure 6C). 

All of these results support CV as the target of TBTC (von Ballmoos et al. 2004). Further 

investigation to confirm the target of TBTC is required. 
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DISCUSSION 

 

TBTC is a potent algicide and molluscicide that was used in marine antifouling ship paints 

(Grun 2014). Due to its adsorbing efficacy on sediments, long half-life and lipophilic nature, the 

levels of TBTC were considerably high in marine sediments and fishes (Mitra et al. 2014). 

Widespread environmental contamination of marine ecosystems with organotins began in the 

1960s (Grun 2014). As a result, a global ban on the use of organotin-based antifouling paints was 

created in 2003 onward (Grun 2014). However, environmental contamination by organotins goes 

beyond aquatic ecosystems because they are also used in industrial and agricultural activities 

(Grun 2014). The slow rate of environmental degradation gives TBTC the potential for 

bioaccumulation in upper trophic species of the food chain. In fact, several studies have found 

TBT concentrations in human blood in the range of 8.3 - 293 nM (Kannan et al. 1999; Whalen et 

al. 1999). This range is consistent with the TBTC concentrations used in this study. However, 

tributyltin compounds may be metabolized to dibutyltin and other metabolites (Boyer 1989), and 

TBT is rapidly cleared from blood. Thus, blood would not be the ideal biological compartment 

for estimating butyltin burden in humans (Kannan et al, 1999). In liver samples from 9 Polish, 4 

Japaneses and 18 Danish, ranges of 2.4 – 11; 59 – 96; y 1.1 – 33 ng of butyltin 

(TBT+DBT+MBT)/g of liver were found (Kannan et al. 1997; Nielsen et al. 2002; Takahashi et 

al. 1999). 

Om and Owt cybrids (or Am and Awt cybrids) differ in their mtDNA genotype. The 

phenotypic differences provoked by TBTC between cybrids from the same nuclear genetic 

background suggest that mtDNA is the responsible factor. For the analysis of all mitochondrial 

variables, except oxygen consumption, in osteosarcoma 143B cybrids, we used isogenic cybrids 
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(Owti and Om). The Owti cybrid only differs from Om in the m.8993 nucleotide position. Our 

results suggest that this mtDNA nucleotide position is the factor responsible for the phenotypic 

differences in response to TBTC between these cells. Moreover, there is a higher similarity in the 

mitochondrial response to TBTC between the Om and Am cybrids (or between Owt/Owti and 

Awt cybrids), that harbor different nDNA and mtDNA but the same m.8993 nucleotide, than Om 

and Owt/Owti cybrids (or Am and Awt cybrids), that harbor the same nDNA or even the same 

mtDNA but differ in the m.8993 nucleotide. These results confirm that the m.8993T>G 

transversion is the responsible factor for the phenotypic differences between these cells in the 

response to TBTC. Therefore, a combination of this pathological mutation and this environmental 

contaminant could modify the phenotypic expression of the m.8993T>G mutation. 

Several p.MT-ATP6 TMH4 and 5 amino acids from the CV proton channel are mutated in 

patients suffering from different mitochondriopathies (Lopez-Gallardo et al. 2014). The 

interaction of a particular mutation with an environmental factor, such as TBTC, may explain 

different pathological phenotypes. Interestingly, such an interaction might also explain why the 

m.9025G>A/p.MT-ATP6:G167S mutation, a candidate for the etiologic factor of a particular 

mitochondriopathy, is found in both patients and healthy individuals. The m.9025G>A mutation 

was found in a patient with loss of Purkinje cells (Lopez-Gallardo et al. 2014), and Purkinje cells 

showed degenerative changes throughout the tributyltin treated-rat cerebellum (Elsabbagh et al. 

2002). 

Organotin compounds are highly lipophilic and readily penetrate the blood-brain barrier to 

enter the brain (Kotake 2012). An in vitro study reported that a concentration of 30 nM TBTC 

caused a significant decrease in MIMP in dissociated mixed cells from different parts of the rat 

brain. Cells from the striatum showed a higher susceptibility than cells from other brain regions 
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(Mitra et al. 2014). Brain lesions, particularly in the striatum, characterize a group of disorders 

termed “striatal necrosis syndromes”. These disorders include familial bilateral striatal necrosis 

(FBSN), MILS and NARP, and they can be caused by MT-ATP6 mutations (Schon et al. 2001). 

Interestingly, we found that levels of oxygen consumption, MIMP, and ATP production in wild-

type cybrids following TBTC exposure were similar to levels in cybrids with MT-ATP6 mutations 

before TBTC exposure. More experiments in primary cells, such as neurons, are required. 

However, our findings suggest that environmental-induced striatal necrosis syndromes due to 

xenobiotics, such as organotins, may be possible. 
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FIGURE LEGENDS  

 

Figure 1. Oxygen consumption by Osteosarcoma 143B (A) and Adenocarcinoma A549 (B) 

cybrids. The dashed line (100 %) represents the mean value in each of the untreated cybrids. The 

bars indicate the percentage of TBTC-treated cybrids. Error bars represent the standard deviation. 

* P < 0.05 vs. the same untreated cybrid; # P < 0.05 vs. the wild-type cybrid from the same 

nuclear background at the same TBTC concentration; † P < 0.05 for Om vs. Am or Owt vs. Awt 

at the same TBTC concentration.  

 

Figure 2. ATP levels in Osteosarcoma 143B and Adenocarcinoma A549 cybrids. The dashed line 

(100 %) represents the mean value in each of the untreated cybrids. The bars indicate the 

percentage of TBTC-treated cybrids. Error bars represent the standard deviation. * P < 0.05 vs. 

the same untreated cybrid; # P < 0.05 vs. the wild-type cybrid from the same nuclear background 

at the same TBTC concentration; † P < 0.05 for Om vs. Am at the same TBTC concentration.  

 

Figure 3. MIMP in single samples of TBTC-treated Adenocarcinoma A549 cybrids. A decreased 

red stain corresponds to a lower MIMP.  

 

Figure 4. H2O2 production in TBTC-treated Osteosarcoma 143B cybrids. The dashed line (100 

%) represents the mean value in each of the untreated cybrids. The bars indicate the percentage of 

treated cybrids. Error bars represent the standard deviation. * P < 0.05 vs. the same untreated 

cybrid.  
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Figure 5. IDH activity in TBTC-treated Osteosarcoma 143B cybrids. The dashed line (100 %) 

represents the mean value in each of the untreated osteosarcoma 143B cybrids. The bars indicate 

the percentage of treated cybrids. Error bars represent the standard deviation. * P < 0.05 vs. the 

same untreated cybrid. # P < 0.05 vs. the mutant cybrid treated with 20 nM TBTC.  

 

Figure 6. Oligomycin (OLI) effect on different mitochondrial parameters. A) MIMP in single 

samples of treated Adenocarcinoma A549 cybrids. A decreased red stain corresponds to a lower 

MIMP. The uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) was used as a 

control because it decreases MIMP. B) H2O2 production in treated Osteosarcoma 143B cybrids. 

C) IDH activity in treated Osteosarcoma 143B cybrids. The dashed line (100 %) represents the 

mean value in each of the untreated osteosarcoma 143B cybrids. The bars indicate the percentage 

of treated cybrids. Error bars represent the standard deviation. * P < 0.05 vs. the same untreated 

cybrid; # P < 0.05 vs. the wild-type cybrid at the same OLI concentration. 
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Figure 6 

 


